The name of this superfamily has been modified since the most recent official CATH+ release (v4_2_0). At the point of the last release, this superfamily was named:

"
P-loop containing nucleotide triphosphate hydrolases
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 26155: Nitrogenase iron protein

There are 1 EC terms in this cluster

Please note: EC annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

Note: The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.

EC Term Annotations Evidence
Nitrogenase. [EC: 1.18.6.1]
8 reduced ferredoxin + 8 H(+) + N(2) + 16 ATP + 16 H(2)O = 8 oxidized ferredoxin + H(2) + 2 NH(3) + 16 ADP + 16 phosphate.
  • Composed of two proteins that can be separated but are both required for nitrogenase activity.
  • Dinitrogen reductase is a [4Fe-4S] protein, which, with two molecules of ATP and ferredoxin, generates an electron.
  • The electron is transferred to the other protein, dinitrogenase (molybdoferredoxin).
  • Dinitrogenase is a molybdenum-iron protein that reduces dinitrogen in three succesive two-electron reductions from nitrogen to diimine to hydrazine to two molecules of ammonia; the molybdenum may be replaced by vanadium or iron.
  • The reduction is initiated by formation of hydrogen in stoichiometric amounts.
  • Acetylene is reduced to ethylene (but only very slowly to ethane), azide to nitrogen and ammonia, and cyanide to methane and ammonia.
  • In the absence of a suitable substrate, hydrogen is slowly formed.
  • Ferredoxin may be replaced by flavodoxin (see EC 1.19.6.1).
  • Formerly EC 1.18.2.1.
106 A0A068BF77 A0A068BGV9 A0A068BGX5 A0A068BIM6 A0A069CXP4 A0A096YGD5 A0A0A0Q8F3 A0A0B1U2V9 A0A0D8J7L2 A0A0E9LTH4
(96 more...)