The name of this superfamily has been modified since the most recent official CATH+ release (v4_2_0). At the point of the last release, this superfamily was named:

"
Nitrogenase molybdenum iron protein domain
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 29506: Nitrogenase (Molybdenum-iron) beta chain

There are 1 EC terms in this cluster

Please note: EC annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

Note: The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.

EC Term Annotations Evidence
Nitrogenase. [EC: 1.18.6.1]
8 reduced ferredoxin + 8 H(+) + N(2) + 16 ATP + 16 H(2)O = 8 oxidized ferredoxin + H(2) + 2 NH(3) + 16 ADP + 16 phosphate.
  • Composed of two proteins that can be separated but are both required for nitrogenase activity.
  • Dinitrogen reductase is a [4Fe-4S] protein, which, with two molecules of ATP and ferredoxin, generates an electron.
  • The electron is transferred to the other protein, dinitrogenase (molybdoferredoxin).
  • Dinitrogenase is a molybdenum-iron protein that reduces dinitrogen in three succesive two-electron reductions from nitrogen to diimine to hydrazine to two molecules of ammonia; the molybdenum may be replaced by vanadium or iron.
  • The reduction is initiated by formation of hydrogen in stoichiometric amounts.
  • Acetylene is reduced to ethylene (but only very slowly to ethane), azide to nitrogen and ammonia, and cyanide to methane and ammonia.
  • In the absence of a suitable substrate, hydrogen is slowly formed.
  • Ferredoxin may be replaced by flavodoxin (see EC 1.19.6.1).
  • Formerly EC 1.18.2.1.
148 A0A011QJ53 A0A023XXU5 A0A060I7U7 A0A060UNR3 A0A060V2M2 A0A063XZ96 A0A072BUN9 A0A086CGI3 A0A090DV58 A0A090F2M3
(138 more...)