The name of this superfamily has been modified since the most recent official CATH+ release (v4_2_0). At the point of the last release, this superfamily was: waiting to be named.

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 115693: Non-ribosomal peptide biosynthesis thioesterase

There are 5 EC terms in this cluster

Please note: EC annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

Note: The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.

EC Term Annotations Evidence
Oleoyl-[acyl-carrier-protein] hydrolase. [EC: 3.1.2.14]
Oleoyl-[acyl-carrier-protein] + H(2)O = [acyl-carrier-protein] + oleate.
  • Acts on [acyl-carrier-protein] thioesters of fatty acids from C(12) to C(18), but the derivative of oleic acid is hydrolyzed much more rapidly than any other compound tested.
348 A0A062WRA9 A0A062WRA9 A0A062X3H0 A0A062X3H0 A0A068QR83 A0A068QR83 A0A068Z370 A0A068Z370 A0A073CGX1 A0A073CGX1
(338 more...)
Beta-ketoacyl-[acyl-carrier-protein] synthase I. [EC: 2.3.1.41]
Acyl-[acyl-carrier-protein] + malonyl-[acyl-carrier-protein] = 3-oxoacyl- [acyl-carrier-protein] + CO(2) + [acyl-carrier-protein].
  • Responsible for the chain-elongation step of dissociated (type II) fatty-acid biosynthesis, i.e. the addition of two C atoms to the fatty-acid chain.
  • Escherichia coli mutants that lack this enzyme are deficient in unsaturated fatty acids.
  • Can use fatty acyl thioesters of ACP (C(2) to C(16)) as substrates, as well as fatty acyl thioesters of Co-A (C(4) to C(16)).
  • The substrate specificity is very similar to that of EC 2.3.1.179 with the exception that the latter enzyme is far more active with palmitoleoyl-ACP (C(16)-Delta(9)) as substrate, allowing the organism to regulate its fatty-acid composition with changes in temperature.
70 A0A0H5KWY2 A0A0H5KWY2 A0A0U0Y7Z7 A0A0U0Y7Z7 A0A0U1ATD7 A0A0U1ATD7 A0A0U1BM41 A0A0U1BM41 A0A1M8I4T2 A0A1M8I4T2
(60 more...)
[Acyl-carrier-protein] S-malonyltransferase. [EC: 2.3.1.39]
Malonyl-CoA + an [acyl-carrier-protein] = CoA + a malonyl-[acyl-carrier- protein].
  • Essential, along with EC 2.3.1.38, for the initiation of fatty-acid biosynthesis in bacteria.
  • Also provides the malonyl groups for polyketide biosynthesis.
  • The product of the reaction, malonyl-ACP, is an elongation substrate in fatty-acid biosynthesis.
  • In Mycobacterium tuberculosis, holo-ACP (the product of EC 2.7.8.7) is the preferred substrate.
  • This enzyme also forms part of the multienzyme complexes EC 4.1.1.88 and EC 4.1.1.89.
  • Malonylation of ACP is immediately followed by decarboxylation within the malonate-decarboxylase complex to yield acetyl-ACP, the catalytically active species of the decarboxylase.
  • In the enzyme from Klebsiella pneumoniae, methylmalonyl-CoA can also act as a substrate but acetyl-CoA cannot whereas the enzyme from Pseudomonas putida can use both as substrates.
  • The ACP subunit found in fatty-acid biosynthesis contains a pantetheine-4'-phosphate prosthetic group; that from malonate decarboxylase also contains pantetheine-4'-phosphate but in the form of a 2'-(5-triphosphoribosyl)-3'-dephospho-CoA prosthetic group.
18 A0A0A1F4L5 A0A0A1F4L5 A0A0K0PDA6 A0A0K0PDA6 A0A0K3AYF4 A0A0K3AYF4 G5J9B1 G5J9B1 Q4C5X2 Q4C5X2
(8 more...)
6-deoxyerythronolide-B synthase. [EC: 2.3.1.94]
Propanoyl-CoA + 6 (2S)-methylmalonyl-CoA + 6 NADPH = 6-deoxyerythronolide B + 7 CoA + 6 CO(2) + H(2)O + 6 NADP(+).
  • The product, 6-deoxyerythronolide B, contains a 14-membered lactone ring and is an intermediate in the biosynthesis of erythromycin antibiotics.
  • Biosynthesis of 6-deoxyerythronolide B requires 28 active sites that are precisely arranged along three large polypeptides, denoted DEBS1, -2 and -3.
  • The polyketide product is synthesized by the processive action of a loading didomain, six extension modules and a terminal thioesterase domain.
  • Each extension module contains a minimum of a ketosynthase (KS), an acyltransferase (AT) and an acyl-carrier protein (ACP).
  • The KS domain both accepts the growing polyketide chain from the previous module and catalyzes the subsequent decarboxylative condensation between this substrate and an ACP-bound methylmalonyl extender unit, introduce by the AT domain.
  • This combined effort gives rise to a new polyketide intermediate that has been extended by two carbon atoms.
6 B7K7V0 B7K7V0 D8G899 D8G899 Q03133 Q03133
Dodecanoyl-[acyl-carrier-protein] hydrolase. [EC: 3.1.2.21]
Dodecanoyl-[acyl-carrier-protein] + H(2)O = [acyl-carrier-protein] + dodecanoate.
  • Acts on the acyl-carrier protein thioester of C(12) and, with a much lower activity, C(14) fatty acids.
  • The derivative of oleic acid is hydrolyzed very slowly.
4 A0A1A0CSF3 A0A1A0CSF3 A0A1E3L566 A0A1E3L566
CATH-Gene3D is a Global Biodata Core Resource Learn more...