The name of this superfamily has been modified since the most recent official CATH+ release (v4_2_0). At the point of the last release, this superfamily was named:

"
Malonyl-Coenzyme A Acyl Carrier Protein, domain 2
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 12623: Membrane bound polyketide synthase

There are 5 EC terms in this cluster

Please note: EC annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

Note: The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.

EC Term Annotations Evidence
Beta-ketoacyl-[acyl-carrier-protein] synthase I. [EC: 2.3.1.41]
Acyl-[acyl-carrier-protein] + malonyl-[acyl-carrier-protein] = 3-oxoacyl- [acyl-carrier-protein] + CO(2) + [acyl-carrier-protein].
  • Responsible for the chain-elongation step of dissociated (type II) fatty-acid biosynthesis, i.e. the addition of two C atoms to the fatty-acid chain.
  • Escherichia coli mutants that lack this enzyme are deficient in unsaturated fatty acids.
  • Can use fatty acyl thioesters of ACP (C(2) to C(16)) as substrates, as well as fatty acyl thioesters of Co-A (C(4) to C(16)).
  • The substrate specificity is very similar to that of EC 2.3.1.179 with the exception that the latter enzyme is far more active with palmitoleoyl-ACP (C(16)-Delta(9)) as substrate, allowing the organism to regulate its fatty-acid composition with changes in temperature.
5 A0A0T9C3B4 A0A0T9DLJ6 A0A0T9XS57 A0A0U0R605 A0A1K6TDK6
3-oxoacyl-[acyl-carrier-protein] reductase. [EC: 1.1.1.100]
(3R)-3-hydroxyacyl-[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-[acyl- carrier-protein] + NADPH.
  • Exhibits a marked preference for [acyl-carrier-protein] derivatives over CoA derivatives as substrates.
1 A0A0L1HEM4
6-deoxyerythronolide-B synthase. [EC: 2.3.1.94]
Propanoyl-CoA + 6 (2S)-methylmalonyl-CoA + 6 NADPH = 6-deoxyerythronolide B + 7 CoA + 6 CO(2) + H(2)O + 6 NADP(+).
  • The product, 6-deoxyerythronolide B, contains a 14-membered lactone ring and is an intermediate in the biosynthesis of erythromycin antibiotics.
  • Biosynthesis of 6-deoxyerythronolide B requires 28 active sites that are precisely arranged along three large polypeptides, denoted DEBS1, -2 and -3.
  • The polyketide product is synthesized by the processive action of a loading didomain, six extension modules and a terminal thioesterase domain.
  • Each extension module contains a minimum of a ketosynthase (KS), an acyltransferase (AT) and an acyl-carrier protein (ACP).
  • The KS domain both accepts the growing polyketide chain from the previous module and catalyzes the subsequent decarboxylative condensation between this substrate and an ACP-bound methylmalonyl extender unit, introduce by the AT domain.
  • This combined effort gives rise to a new polyketide intermediate that has been extended by two carbon atoms.
1 B8MCS4
NADH:ubiquinone reductase (H(+)-translocating). [EC: 1.6.5.3]
NADH + ubiquinone + 5 H(+)(In) = NAD(+) + ubiquinol + 4 H(+)(Out).
  • The complex is present in mitochondria and aerobic bacteria.
  • Breakdown of the complex can release EC 1.6.99.3.
  • In photosynthetic bacteria, reversed electron transport through this enzyme can reduce NAD(+) to NADH.
1 A0A0L1HEM4
Laccase. [EC: 1.10.3.2]
4 benzenediol + O(2) = 4 benzosemiquinone + 2 H(2)O.
  • A group of multi-copper proteins of low specificity.
  • Acts on both o- and p-quinols, and often acting also on aminophenols and phenylenediamine.
  • The semiquinone may react further either enzymically or non- enzymically.
1 A0A0L1HEM4
CATH-Gene3D is a Global Biodata Core Resource Learn more...