The name of this superfamily has been modified since the most recent official CATH+ release (v4_2_0). At the point of the last release, this superfamily was named:

"
Glutaredoxin
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 79980: Putative suppressor for copper-sensitivity D

There are 3 EC terms in this cluster

Please note: EC annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

Note: The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.

EC Term Annotations Evidence
ADP-glyceromanno-heptose 6-epimerase. [EC: 5.1.3.20]
ADP-D-glycero-D-manno-heptose = ADP-L-glycero-D-manno-heptose.
    5 A0A0Y0ARM3 A0A112VY26 A4N260 A5UIP0 E1X6T8
    Deoxyribose-phosphate aldolase. [EC: 4.1.2.4]
    2-deoxy-D-ribose 5-phosphate = D-glyceraldehyde 3-phosphate + acetaldehyde.
      4 A0A0E1SKA6 A0A0H3PDW0 A4MVN4 A4NY30
      Peroxiredoxin. [EC: 1.11.1.15]
      2 R'-SH + ROOH = R'-S-S-R' + H(2)O + ROH.
      • Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant proteins.
      • They can be divided into three classes: typical 2-Cys, atypical 2-Cys and 1-Cys peroxiredoxins.
      • The peroxidase reaction comprises two steps centered around a redox- active cysteine called the peroxidatic cysteine.
      • All three peroxiredoxin classes have the first step in common, in which the peroxidatic cysteine attacks the peroxide substrate and is oxidized to S-hydroxycysteine (a sulfenic acid).
      • The second step of the peroxidase reaction, the regeneration of cysteine from S-hydroxycysteine, distinguishes the three peroxiredoxin classes.
      • For typical 2-Cys Prxs, in the second step, the peroxidatic S-hydroxycysteine from one subunit is attacked by the 'resolving' cysteine located in the C-terminus of the second subunit, to form an intersubunit disulfide bond, which is then reduced by one of several cell-specific thiol-containing reductants (R'-SH) (e.g. thioredoxin, AhpF, tryparedoxin or AhpD), completing the catalytic cycle.
      • In the atypical 2-Cys Prxs, both the peroxidatic cysteine and its resolving cysteine are in the same polypeptide, so their reaction forms an intrachain disulfide bond.
      • To recycle the disulfide, known atypical 2-Cys Prxs appear to use thioredoxin as an electron donor.
      • The 1-Cys Prxs conserve only the peroxidatic cysteine, so that its oxidized form is directly reduced to cysteine by the reductant molecule.
      1 F0ER40
      CATH-Gene3D is a Global Biodata Core Resource Learn more...