The name of this superfamily has been modified since the most recent official CATH+ release (v4_2_0). At the point of the last release, this superfamily was named:

"
Phosphorylase Kinase; domain 1
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 3319: Predicted protein

There are 2 EC terms in this cluster

Please note: EC annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

Note: The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.

EC Term Annotations Evidence
Mitogen-activated protein kinase. [EC: 2.7.11.24]
ATP + a protein = ADP + a phosphoprotein.
  • Phosphorylation of specific tyrosine and threonine residues in the activation loop of this enzyme by EC 2.7.12.2 is necessary for enzyme activation.
  • Once activated, the enzyme phosphorylates target substrates on serine or threonine residues followed by a proline.
  • A distinguishing feature of all MAPKs is the conserved sequence Thr- Xaa-Tyr (TXY).
  • Mitogen-activated protein kinase (MAPK) signal transduction pathways are among the most widespread mechanisms of cellular regulation.
  • Mammalian MAPK pathways can be recruited by a wide variety of stimuli including hormones (e.g. insulin and growth hormone), mitogens (e.g. epidermal growth factor and platelet-derived growth factor), vasoactive peptides (e.g. angiotensin-II and endothelin), inflammatory cytokines of the tumor necrosis factor (TNF) family and environmental stresses such as osmotic shock, ionizing radiation and ischemeic injury.
  • Formerly EC 2.7.1.37.
671 A0A010RBJ6 A0A015K212 A0A015L1H3 A0A015LLX1 A0A017S5T5 A0A017S6R9 A0A022W3E9 A0A022W409 A0A022W477 A0A022XTV4
(661 more...)
Glycogen phosphorylase. [EC: 2.4.1.1]
((1->4)-alpha-D-glucosyl)(n) + phosphate = ((1->4)-alpha-D-glucosyl)(n-1) + alpha-D-glucose 1-phosphate.
  • This entry covers several enzymes from different sources that act in vivo on different forms of (1->4)-alpha-D-glucans.
  • Some of these enzymes catalyze the first step in the degradation of large branched glycan polymers - the phosphorolytic cleavage of alpha-1,4-glucosidic bonds from the non-reducing ends of linear poly(1->4)-alpha-D-glucosyl chains within the polymers.
  • The enzyme stops when it reaches the fourth residue away from an alpha-1,6 branching point, leaving a highly branched core known as a limit dextrin.
  • The description (accepted name) of the enzyme should be modified for each specific instance by substituting 'glycogen' with the name of the natural substrate, e.g. maltodextrin phosphorylase, starch phosphorylase, etc.
2 A0A0G4LLR9 A0A0G4N6B9
CATH-Gene3D is a Global Biodata Core Resource Learn more...