The name of this superfamily has been modified since the most recent official CATH+ release (v4_2_0). At the point of the last release, this superfamily was named:

"
Translation factors
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 37992: Translation elongation factor Tu

There are 2 EC terms in this cluster

Please note: EC annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

Note: The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.

EC Term Annotations Evidence
Protein-synthesizing GTPase. [EC: 3.6.5.3]
GTP + H(2)O = GDP + phosphate.
  • This enzyme comprises a family of proteins involved in prokaryotic as well as eukaryotic protein synthesis.
  • In the initiation factor complex, it is IF-2b (98 kDa) that binds GTP and subsequently hydrolyzes it in prokaryotes.
  • In eukaryotes, it is eIF-2 (150 kDa) that binds GTP.
  • In the elongation phase, the GTP-hydrolyzing proteins are the EF-Tu polypeptide of the prokaryotic transfer factor (43 kDa), the eukaryotic elongation factor EF-1-alpha (53 kDa), the prokaryotic EF-G (77 kDa), the eukaryotic EF-2 (70-110 kDa) and the signal recognition particle that play a role in endoplasmic reticulum protein synthesis (325 kDa).
  • EF-Tu and EF-1-alpha catalyze binding of aminoacyl-tRNA to the ribosomal A-site, while EF-G and EF-2 catalyze the translocation of peptidyl-tRNA from the A-site to the P-site.
  • GTPase activity is also involved in polypeptide release from the ribosome with the aid of the pRFs and eRFs.
  • Formerly EC 3.6.1.48.
28 A0A0A0I4S3 A0A0B8WQS3 A0A0M2R3V7 A0A0P7KB23 A0A0Y5MV82 A0A112C5W1 A0A163TG15 A0A1L6CP23 A0A1L7BQD6 A0A1L8ZBR6
(18 more...)
[Formate-C-acetyltransferase]-activating enzyme. [EC: 1.97.1.4]
S-adenosyl-L-methionine + dihydroflavodoxin + [formate C-acetyltransferase]-glycine = 5'-deoxyadenosine + L-methionine + flavodoxin semiquinone + [formate C-acetyltransferase]-glycin-2-yl radical.
  • A single glycine residue in EC 2.3.1.54 is oxidized to the corresponding radical by transfer of H from its CH(2) to AdoMet with concomitant cleavage of the latter.
  • The first stage is reduction of the AdoMet to give methionine and the 5'-deoxyadenosin-5'-yl radical, which then abstracts a hydrogen radical from the glycine residue.
1 F9EZC0
CATH-Gene3D is a Global Biodata Core Resource Learn more...