The name of this superfamily has been modified since the most recent official CATH+ release (v4_2_0). At the point of the last release, this superfamily was: waiting to be named.

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 3004: ATP synthase gamma chain

There are 1 EC terms in this cluster

Please note: EC annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

Note: The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.

EC Term Annotations Evidence
H(+)-transporting two-sector ATPase. [EC: 3.6.3.14]
ATP + H(2)O + H(+)(In) = ADP + phosphate + H(+)(Out).
  • A multisubunit non-phosphorylated ATPase that is involved in the transport of ions.
  • Large enzymes of mitochondria, chloroplasts and bacteria with a membrane sector (F(o), V(o), A(o)) and a cytoplasmic-compartment sector (F(1), V(1), A(1)).
  • The F-type enzymes of the inner mitochondrial and thylakoid membranes act as ATP synthases.
  • All of the enzymes included here operate in a rotational mode, where the extramembrane sector (containing 3 alpha- and 3 beta-subunits) is connected via the delta-subunit to the membrane sector by several smaller subunits.
  • Within this complex, the gamma- and epsilon-subunits, as well as the 9-12 c subunits rotate by consecutive 120 degree angles and perform parts of ATP synthesis.
  • This movement is driven by the H(+) electrochemical potential gradient.
  • The V-type (in vacuoles and clathrin-coated vesicles) and A-type (archaeal) enzymes have a similar structure but, under physiological conditions, they pump H(+) rather than synthesize ATP.
  • Formerly EC 3.6.1.34.
12 A0A016F131 A0A076I681 A0A078PUA0 A0A078Q871 A0A0H5B0T9 A0A0P0M3D6 A0A0W8G685 A0A1L3N7V0 D3IHF8 I1YWG6
(2 more...)
CATH-Gene3D is a Global Biodata Core Resource Learn more...