CATH Classification

Domain Context

CATH Clusters

Superfamily Hotdog Thioesterase
Functional Family 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase

Enzyme Information
Trans-2-decenoyl-[acyl-carrier-protein] isomerase.
based on mapping to UniProt P0A6Q3
Trans-dec-2-enoyl-[acyl-carrier-protein] = cis-dec-3-enoyl-[acyl-carrier- protein].
-!- While the enzyme from Escherichia coli is highly specific for the 10-carbon enoyl-ACP, the enzyme from Streptococcus pneumoniae can also use the 12-carbon enoyl-ACP as substrate in vitro but not 14- or 16-carbon enoyl-ACPs. -!- ACP can be replaced by either CoA or N-acetylcysteamine thioesters. -!- The cis-3-enoyl product is required to form unsaturated fatty acids, such as palmitoleic acid and cis-vaccenic acid, in dissociated (or type II) fatty-acid biosynthesis.
3-hydroxyacyl-[acyl-carrier-protein] dehydratase.
based on mapping to UniProt P0A6Q3
A (3R)-3-hydroxyacyl-[acyl-carrier protein] = a trans-2-enoyl-[acyl- carrier protein] + H(2)O.
-!- This enzyme is responsible for the dehydration step of the dissociated (type II) fatty-acid biosynthesis system that occurs in plants and bacteria. -!- The enzyme uses fatty acyl thioesters of ACP in vivo. -!- Different forms of the enzyme may have preferences for substrates with different chain length. -!- For example, the activity of FabZ, the ubiquitous enzyme in bacteria, decreases with increasing chain length. -!- Gram-negative bacteria that produce unsaturated fatty acids, such as Escherichia coli, have another form (FabA) that prefers intermediate chain length, and also catalyzes EC -!- Despite the differences both forms can catalyze all steps leading to the synthesis of palmitate (C16:0). -!- FabZ, but not FabA, can also accept unsaturated substrates. -!- Formerly EC, EC and EC

UniProtKB Entries (1)

Escherichia coli K-12
3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase

PDB Structure

External Links
Organism Escherichia
Primary Citation
Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site.
Leesong, M., Henderson, B.S., Gillig, J.R., Schwab, J.M., Smith, J.L.