The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was named:

"
Translation factors
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 31: Sulfate adenylyltransferase subunit 1

There are 2 EC terms in this cluster

Please note: EC annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

Note: The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.

EC Term Annotations Evidence
Sulfate adenylyltransferase. [EC: 2.7.7.4]
ATP + sulfate = diphosphate + adenylyl sulfate.
  • The human phosphoadenosine-phosphosulfate synthase (PAPS) system is a bifunctional enzyme: ATP sulfurylase, which catalyzes the formation of adenosine 5'-phosphosulfate (APS) from ATP and inorganic sulfate and the second step is catalyzed by the APS kinase portion of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase, which involves the formation of PAPS from enzyme bound APS and ATP.
  • This is in contrast to what is found in bacteria, yeasts, fungi and plants, where the formation of PAPS is carried out by two individual polypeptides, EC 2.7.7.4 and EC 2.7.1.25.
4211 A0A023Z2H3 A0A023Z2H3 A0A023Z2H3 A0A023Z2H3 A0A023Z2H3 A0A023Z2H3 A0A023Z2H3 A0A023Z2H3 A0A023Z2H3 A0A025CYQ8
(4201 more...)
Adenylyl-sulfate kinase. [EC: 2.7.1.25]
ATP + adenylyl sulfate = ADP + 3'-phosphoadenylyl sulfate.
  • The human phosphoadenosine-phosphosulfate synthase (PAPS) system is a bifunctional enzyme: ATP sulfurylase, which catalyzes the formation of adenosine 5'-phosphosulfate (APS) from ATP and inorganic sulfate and the second step is catalyzed by the APS kinase portion of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase, which involves the formation of PAPS from enzyme bound APS and ATP.
  • This is in contrast to what is found in bacteria, yeasts, fungi and plants, where the formation of PAPS is carried out by two individual polypeptides, EC 2.7.7.4 and EC 2.7.1.25.
116 A0A045JVI2 A0A045JVI2 A0A045JVI2 A0A045JVI2 A0A045JVI2 A0A045JVI2 A0A045JVI2 A0A045JVI2 A0A045JVI2 A0A0C6F156
(106 more...)