CATH Classification

Domain Context

CATH Clusters

Superfamily Met repressor-like
Functional Family Bifunctional protein PutA

Enzyme Information
Proline dehydrogenase.
based on mapping to UniProt P09546
L-proline + a quinone = (S)-1-pyrroline-5-carboxylate + a quinol.
-!- The electrons from L-proline are transferred to the FAD cofactor, and from there to a quinone acceptor. -!- In many organisms, ranging from bacteria to mammals, proline is oxidized to glutamate in a two-step process involving this enzyme and EC -!- Both activities are carried out by the same enzyme in enterobacteria. -!- Formerly EC
L-glutamate gamma-semialdehyde dehydrogenase.
based on mapping to UniProt P09546
L-glutamate 5-semialdehyde + NAD(+) + H(2)O = L-glutamate + NADH.
-!- This enzyme catalyzes the irreversible oxidation of glutamate-gamma- semialdehyde to glutamate as part of the proline degradation pathway. -!- (S)-1-pyrroline-5-carboxylate, the product of the first enzyme of the pathway (EC is in spontaneous equilibrium with its tautomer L-glutamate gamma-semialdehyde. -!- In many bacterial species, both activities are carried out by a single bifunctional enzyme. -!- The enzyme can also oxidize other 1-pyrrolines, e.g. 3-hydroxy-1- pyrroline-5-carboxylate is converted into 4-hydroxyglutamate and (R)- 1-pyrroline-5-carboxylate is converted into D-glutamate. -!- NADP(+) can also act as acceptor, but with lower activity. -!- Formerly EC

UniProtKB Entries (1)

Escherichia coli K-12
Bifunctional protein PutA

PDB Structure

External Links
Primary Citation
Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA.
Zhou, Y., Larson, J.D., Bottoms, C.A., Arturo, E.C., Henzl, M.T., Jenkins, J.L., Nix, J.C., Becker, D.F., Tanner, J.J.