CATH Classification

Domain Context

CATH Clusters

Superfamily Golgi alpha-mannosidase II
Functional Family Maltase-glucoamylase, intestinal

Enzyme Information

3.2.1.20
Alpha-glucosidase.
based on mapping to UniProt O43451
Hydrolysis of terminal, non-reducing (1->4)-linked alpha-D-glucose residues with release of alpha-D-glucose.
-!- Group of enzymes whose specificity is directed mainly toward the exohydrolysis of 1,4-alpha-glucosidic linkages, and that hydrolyze oligosaccharides rapidly, relative to polysaccharides, which are hydrolyzed relatively slowly, or not at all. -!- The intestinal enzyme also hydrolyzes polysaccharides, catalyzing the reactions of EC 3.2.1.3, and, more slowly, hydrolyzes 1,6-alpha-D- glucose links.
3.2.1.3
Glucan 1,4-alpha-glucosidase.
based on mapping to UniProt O43451
Hydrolysis of terminal (1->4)-linked alpha-D-glucose residues successively from non-reducing ends of the chains with release of beta-D- glucose.
-!- Most forms of the enzyme can rapidly hydrolyze 1,6-alpha-D-glucosidic bonds when the next bond in the sequence is 1,4, and some preparations of this enzyme hydrolyze 1,6- and 1,3-alpha-D-glucosidic bonds in other polysaccharides. -!- This entry covers all such enzymes acting on polysaccharides more rapidly than on oligosaccharides. -!- EC 3.2.1.20 from mammalian intestine can catalyze similar reactions.

UniProtKB Entries (1)

O43451
MGA_HUMAN
Homo sapiens
Maltase-glucoamylase, intestinal

PDB Structure

PDB 3CTT
External Links
Method X-RAY DIFFRACTION
Organism
Primary Citation
Total syntheses of casuarine and its 6-O-alpha-glucoside: complementary inhibition towards glycoside hydrolases of the GH31 and GH37 families
Cardona, F., Parmeggiani, C., Faggi, E., Bonaccini, C., Gratteri, P., Sim, L., Gloster, T.M., Roberts, S., Davies, G.J., Rose, D.R., Goti, A.
Chemistry